LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - CHEMISTRY

SECOND SEMESTER - APRIL 2014

PH 2105/2103 - PHYSICS FOR CHEMISTRY - I

Date : 07/04/2014
Dept. No. \square

Max. : 100 Marks

Time : 09:00-12:00

PART A

Answer ALL the questions

$$
(10 \times 2=20)
$$

1. Define angular velocity and give the relation between linear and angular velocity.
2. What are generalized coordinates? What will be the degrees of freedom of two independent particles moving freely in space?
3. State Newton's law of gravitation.
4. Define Poisson's ratio. What is the maximum possible value of Poisson's ratio.
5. Find the half angular width of the central bright maximum in the Fraunhofer diffraction pattern of slit of width $12 \times 10^{-7} \mathrm{~m}$ when the slit is illuminated by monochromatic light of wavelength $6000 \AA$.
6. Plane polarized light passes through a quartz plate with its optic axis parallel to the faces. Calculate the least thickness of the plate for which the emergent beam will be plane-polarized. (Take $\mu_{\mathrm{E}}=1.5533, \mu_{0}=1.5442$ and $\lambda=5 \times 10^{-7} \mathrm{~m}$).
7. State the postulates of Einstein's special theory of relativity.
8. Define Crystal lattice
9. What are Polaroids? Give any two uses.
10. Lattice constant of copper is 0.38 nm . Calculate the distance between (110) planes.

> PART - B

Answer any FOUR questions
11. What are Constraints? Explain the types of Constraints with suitable example.
12. State Kepler's laws of planetary motion. Derive Newton's law of gravitation from Kepler's law.
13. a) Show that the work done per unit volume in stretching a wire is equal to $1 / 2($ stress \times strain $)$.
b) Calculate the work done in stretching a uniform metal wire of area of cross-section $10^{-6} \mathrm{~m}^{2}$ and length 1.5 m through $4 \times 10^{-3} \mathrm{~m}$. (Take Young's modulus, $\mathrm{q}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$).
14. What are Miller Indices? Write the procedure for finding Miller Indices of a given plane.
15. Explain with a neat diagram how Nicol prism be used as a polarizer and an analyser.

PART - C

Answer any FOUR questions
16. Set up the Lagrangian and solve for the equations of motion
a) for a simple pendulum to find the time period.
b) for the Atwood's machine.
17. Define Escape velocity. Derive an expression for the escape velocity of a body.
18. State Bragg's law. Explain the Powder diffraction experimental method of analysing structure of polycrystalline materials.
19. Discuss Fraunhofer diffraction at a narrow single slit.
20. a) Using Stoke's law deduce an expression for the terminal velocity of a spherical ball falling under gravity through a viscous liquid.
b) Define Surface energy. Derive the expression for excess pressure inside a liquid drop.

